kindle电子书

资源下载,尽在我的书库!
首页 > kindle电子书库 > 工业|计算机|互联网 > 电子、计算机、网络

深度学习:入门与实践

  • 作者: 多作者
  • 体积:17.28 MB
  • 语言:中文
  • 日期:2019-01-15
  • 推荐:

简介:本书由一线资深技术专家撰写,凝结了其自身多年的实践经验,阐述了深度学习的发展历程、相关概念和工作原理,介绍了两个当前流行的深度学习工具:Caffe 和TensorFlow ,并且初步探讨了强化学习的基本原理和应用。为了帮助初学者快速上手,本书注重从总体框架和脉络上把握深度学习技术,同时在阐述原理时配以简单的实例供读者印证。

电子书详细介绍

TAG():机器学习

 本书由一线资深技术专家撰写,凝结了其自身多年的实践经验,阐述了深度学习的发展历程、相关概念和工作原理,介绍了两个当前流行的深度学习工具:Caffe 和TensorFlow ,并且初步探讨了强化学习的基本原理和应用。为了帮助初学者快速上手,本书注重从总体框架和脉络上把握深度学习技术,同时在阐述原理时配以简单的实例供读者印证。
本书语言生动风趣,以通俗的语言讲述复杂的原理,循循善诱,深入浅出,适合有志于从事人工智能、深度学习相关研究的信息类专业的高年级本科生或研究生阅读,也可供业界准备或正在从事深度学习、机器视觉等相关研发工作的工程技术人员参考。

编辑推荐

一线资深技术专家撰写,凝结其自身多年的实践经验,深入浅出阐述深度学习的发展历程、相关概念和工作原理
涉及当前流行的两个深度学习工具:Caffe和TensorFlow,并且初步探讨强化学习的基本原理和应用

作者简介

作者:龙飞

龙飞,高级工程师,本科毕业于南京大学,博士毕业于清华大学,香港科技大学博士后。曾供职于中国电子科技集团公司第五十四研究所。现任中国搜索创新研发部总监。负责公司互联网创新产品和人工智能、大数据相关项目的研发。主持并参与了国搜识图、国搜学术、国搜图书等平台和频道的研发与上线。主要研究方向为网络路由、无线网状网络,近年涉足深度学习、数据挖掘领域。在国内外发表学术论文20余篇,获得软件著作权5项,并著有中文专著2部,英文专著1部,译著2部。

 

目录

目录

第1章绪论

1.1引言

1.2基本概念

1.2.1回归、分类、聚类

1.2.2监督学习、非监督学习、半监督学习、强化学习

1.2.3感知机、神经网络

1.3发展历程

1.4相关学者与会议或赛事

1.5本章小结

参考文献
第2章回归

2.1线性回归

2.1.1问题描述

2.1.2问题求解

2.1.3工具实现

2.2逻辑回归

2.2.1问题描述

2.2.2问题求解

2.2.3工具实现

2.3本章小结

参考文献
第3章人工神经网络

3.1Rosenblatt感知机

3.1.1训练方法

3.1.2算法实例

3.1.3梯度下降

3.2人工神经网络

3.2.1网络架构

3.2.2训练方法

3.2.3算法实例

3.3本章小结

参考文献



深度学习:入门与实践




目录


第4章Caffe简介

4.1CNN原理

4.1.1卷积

4.1.2池化

4.1.3LeNet5

4.2Caffe架构

4.2.1Blob类

4.2.2Layer类

4.2.3Net类

4.2.4Solver类

4.3Caffe应用实例

4.3.1车型识别

4.3.2目标检测

4.4本章小结

参考文献
第5章TensorFlow简介

5.1TensorFlow架构

5.2TensorFlow简单应用

5.2.1TensorFlow安装

5.2.2线性回归

5.3TensorFlow高级应用

5.3.1MNIST手写数字识别

5.3.2车型识别

5.4本章小结

参考文献
第6章强化学习简介

6.1强化学习基本原理

6.2AlphaGo基本架构

6.3其他趣味应用

6.4本章小结

参考文献
后记

我来说两句

本书评论

共有 0 条评论
图书分类
我的书库手机端
帮助中心
会员登录 ×
新用户注册 ×